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Abstract. It is known that, by extending the equivalence of the Fisher information matrix to its
quantum version, the Bures metric, the quantum Jeffreys prior can be determined from the volume
element of the Bures metric. We compute the Bures metric for the displaced squeezed thermal state
and analyse the quantum Jeffreys prior and its marginal probability distributions. To normalize the
marginal probability density function, it is necessary to provide a range of values of the squeezing
parameter or the inverse temperature. We find that if the range of the squeezing parameter is kept
narrow, there are significant differences in the marginal probability density functions in terms of
the squeezing parameters for the displaced and undisplaced situations. However, these differences
disappear as the range increases. Furthermore, marginal probability density functions against
temperature are very different in the two cases.

The relentlessly rapid miniaturization of integrated circuits invariably implies a need to explore
computation at the atomic scale. It is therefore natural to amalgamate two seemingly unrelated
disciplines, namely classical computational theories and quantum mechanics. Indeed, the
recent progress with remarkable breakthroughs in quantum algorithms [1] and quantum
hardwares [2] have immensely enhanced the possibility of realizing a quantum computer.

When one combines classical information theories with quantum theories, one begins
to see the potential application of this amalgamation for the transmission and processing of
information. However, unlike classical theories, repeated sampling of quantum systems are
not always permitted and one needs to consider carefully the observer’s ability to select an
optimal strategy for a given set of signals whose prior probabilities are known [3,4]. Indeed,
one such strategy involves the minimization of the loss of information or maximization of
mutual information by reducing Shannon entropy for an ensemble of signals. In fact, givena
priori information concerning the nature of the signals, one can seek a strategy by replacing the
prior distributions by posterior distributions in accordance with the data from the observations.
This process is possible through the formalism of the Bayesian inferential paradigm.

Related to this choice of strategy but starting from a very different approach is the
geometrical investigation of the quantum analogue of the Fisher information in classical
statistics. The quantum analogue turns out to be related to the Bures metric [5–8]. More
specifically, the Bures metric allows the experimenter to distinguish infinitesimally close
density operators.
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An ensemble of quantum states can be defined as a collection of normalized states
|ψ1〉, . . . |ψn〉 with fixed a priori probabilitiesp1, . . . , pn, respectively [9]. Associated with
this ensemble, one can define its density matrixρ as

ρ =
n∑
i=1

pi |ψi〉〈ψi |. (1)

For pure states, this density matrix can always be diagonalized into a matrix with only one
non-zero eigenvalue. To distinguish between pure states|ψ1〉 and |ψ2〉, one considers the
Fubini–Study distanceDFS and obtains its minimum value, that is

D2
FS(|ψ1〉, |ψ2〉) = inf ‖ |ψ1〉 − eiθ |ψ2〉‖2

= 2(1− |〈ψ1|ψ2〉|) (2)

whereθ is the relative phase between the states,|ψ1〉 and|ψ2〉.
For mixed states, one needs to use density operator formalism. One can extremize the

Hilbert–Schmidt metric, the extension of the Fubini–Study metric, to an enlarged Hilbert space
and show that the equivalent distance for distinguishing two density matrices,ρ1 andρ2, on a
Hilbert space is the Bures distance given by

D2
B(ρ1, ρ2) = 2

(
1− tr

√
ρ

1/2
1 ρ2ρ

1/2
1

)
. (3)

To derive the Bures metric, ds2
B, one can introduce a real parameter,t , and consider the

perturbative expansion int to second order so that the metric becomes

d2
B = gij (ρ) dρi dρj (4)

= 1

2

d2

dt2
DB(ρ, ρ + dρ)2|t=0 (5)

whereρi andρj are canonical coordinates of the density operators in the manifold and dρ is an
infinitesimal change in the density operator. Furthermore, Einstein’s summation convention
is implicitly assumed.

The investigation of the Bures metric for pure states and its geometrical properties have
been widely discussed [7,10,11] and the results have also been extended to impure or mixed
states for spin-12 systems in which the density matrix can be expressed succinctly as

ρ = 1
2(1 +n1σx + n2σy + n3σz) (6)

whereσi are Pauli matrices andni are the components of the density matrix in the Bloch sphere,
i = 1 . . .3. However, as noted by Twamley [6], fewer explicit results have been obtained for
other mixed states. Twamley has, therefore, recently computed an explicit expression for
the Bures metric for the squeezed thermal states. Nevertheless, Twamley did not discuss
the situation for the displaced squeezed states due to the difficulty of finding a faithful matrix
representation for the displaced exponential operators. Recently, Paraoanu and Scutaru [12,13]
have explicitly worked out the Bures distance for displaced thermal states. However, it is
difficult to obtain the exact Bures metric for the displaced squeezed thermal states on the basis
of their results. By considering the Baker–Campbell–Hausdorff (BCH) formula for quadratic
operators [14], we have computed an explicit expression for the Bures distance [15] in terms
of the parameters in the density matrices.

In this paper, we build on our recent results [15] concerning the Bures distance for the
displaced squeezed states. We consider the density operator for the displaced squeezed thermal
state

ρ = Z(β)DS3S†D† (7)
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where

D = exp

[
(a†, a)

(
k

−k∗
)]

and S = exp[12r((a
2 − a†2)]

are unitary operators. Furthermore, in equation (7), the operator3 and the normalization
factorZ(β) are given respectively by exp[− β

2 (aa
† +a†a)] and(tr3)−1 whereβ is the inverse

temperature. The dagger symbol (†) in equation (7) denotes the Hermitian conjugate. We have
also considered the squeezing parameter,r, as a real number.

Using equation (3) and the BCH relation [14,16],

S(a†, a)S† = (a†, a)M S†(a†, a)S = (a†, a)M−1

3(a†, a)3−1 = (a†, a)B
(8)

where

M =
(

coshr − sinhr
− sinhr coshr

)
and B ≡

(
exp(−β) 0

0 exp(β)

)
.

In our previous paper, we first computed the quantity(tr
√
ρ1

1
2ρ2ρ1

1
2 )2 called the Bures fidelity.

The explicit result [15] for the Bures distance, using equation (3), is

D2
B = 2

(
1− exp

{
1

1
(ε1 + ε2)

}
2 sinhβ1

4 sinh β2

4√
Y − 1

)
(9)

whereY = cosh2(r1 − r2) cosh2 β1+β2

4 − sinh2(r1 − r2) cosh2 β1−β2

4 , 1 = coshβ1 coshβ2 +
sinhβ1 sinhβ2 cosh 2(r1− r2)− 1 and

ε1 = sinhβ1 sinh2 β2

2
[(p2 − q2) sinh 2r1− 2(p2 + q2) cosh 2r1] (10)

ε2 = sinh2 β1

2
sinhβ2[(p2 − q2) sinh 2r2 − 2(p2 + q2) cosh 2r2]. (11)

Here q and p denote the canonical position and momentum respectively. Note that the
parametersk andk∗ have been absorbed into the position and momentum using the relations

p = 1√
2
(k + k∗) (12a)

q = 1

i
√

2
(k − k∗). (12b)

In particular, we recover Twamley’s result for the squeezed thermal states in the limit
whenk = k∗ = 0 and the result for the displaced thermal states obtained by Paraoanu and
Scutaru forr = 0.

To compute the Bures metric, we apply equation (5) to the Bures distance in equation (9).
A straightforward calculation yields

d2
B =

1

2
tanh

β

2
(2 cosh(2r)− sinh(2r)) dp2 +

1

2
tanh

β

2
(2 cosh(2r) + sinh(2r)) dq2

+
1

2

[
1 + sech

β

2

]
dr2 +

1

64 sinh2 β/4
dβ2. (13)

By generalizing Wootters’ formulation [17] of a statistical distance between quantum
states, Braunstein and Caves [5] have shown that, up to a factor, the Bures distance for density
matrices is equivalent to the Fisher information matrix. To be more specific, if we considerN
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Figure 1. Variation of the volume element against the temperature parameter,β, and the squeezing
parameter,r.

measurements,ξ1, ξ2, . . . and estimate the parameterθ using the functionθ = θ(ξ1, ξ2, . . .),
then according to Braunstein and Caves, the distinguishability metric can be defined as

ds2 ≡ dθ2

min[N〈(δθ)2〉] . (14)

On the other hand, one knows from Bayesian probabilistic theories [18] that the
non-informative Jeffreys prior† is proportional to the square root of the determinant of
the Fisher information matrix. Furthermore, the Fisher information matrix is determined
by the Riemannian metric on the probability phase space and is therefore invariant to
reparametrization. Relying on the similarities between the classical and quantum analysis,
Slater [19, 20] has extended the classical Bayesian theory to its quantum version by defining
the quantum prior probability distribution as proportional to the square root of the determinant
of the Bures metric. Indeed, Slater [20] has already considered the quantum Jeffreys prior for
the squeezed thermal states obtained by Twamley [6].

For displaced squeezed states, since the Bures metric is diagonal, we can easily compute
the associated volume element, dV , and the result is

dV =
(

1

2
cosh2

β

4
sech3/2

β

2

)√
4 cosh2(2r)− sin2(2r) dp dq dr dβ

≡ f (β)g(r) dp dq dr dβ. (15)

We have plotted the variation of this volume element in figure 1 against the parametersβ and
r.

Since the quantum Jeffreys prior is proportional to the volume element and the volume
element dV can be factorized as a product of univariate function, following Slater [20], we can
indeed consider the univariate marginal probability distributions forβ andr by considering
the functionsf (β) andg(r) separately. In figure 2, we plot the univariate marginal probability
distribution forf (β)and compared the distribution with the results of the undisplaced squeezed
thermal state. It is not possible to obtain an exact form for the normalization factor and we have

† In Bayesian theories, one distinguishes betweena priori probability, or prior probability, anda posterioriprobability,
or posterior probability. Thus, if{Ej , j ∈ J } (J is an arbitrary index set) are exclusive and exhaustive events andD

is some given data, then one definesp(Hj ) as the prior probabilities andp(Hj |D) as the posterior probabilities and
p(D|Hj ) as the likelihood of the eventsHj .
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Figure 2. Marginal probability distribution of quantum Jeffreys prior for the temperature parameter,
β with β0 = 5. Curve (1) refers to the distribution for the displaced squeezed state and curve (2)
refers to the distribution for the undisplaced squeezed state. Note that whereas the marginal
distribution for the undisplaced squeezed states (curve 2) tends to infinity asβ → 0 (high
temperature), the distribution for the displaced squeezed states (curve 1) goes to a finite value
in the same limit.

Figure 3. Plot A and plot B show the marginal probability distribution of quantum Jeffreys prior for
the squeezing parameter,r, with R = 1 andR = 3, respectively. As in figure 2, for plot A, curve
(1) refers to the distribution for displaced squeezed state and curve (2) refers to the distribution for
the undisplaced squeezed state.

computed the marginal probability distribution for the temperature parameterβ numerically
over the range 06 β 6 β0. Note that, whereas the marginal probability distribution for
the undisplaced squeezed state diverges asβ → 0 or at high temperature, in the case of the
displaced squeezed state, the marginal probability distribution goes to a finite value. The result
is reminiscent of a similar situation in chi-square distribution curves in which the probability
density function diverges at one degree of freedom, but not with higher degrees of freedom.
This analogy seems to indicate that the change in the marginal probability density function in
terms of inverse temperature stems from an increased degree of freedom associated with the
displacement of the squeezed states.

In figure 3, we have considered the marginal probability for the squeezing parameter.
For the displaced squeezed states, the normalization factor for the distribution, defined over
the interval, 06 r 6 R, is an elliptic integral of the second kind, specifically the value is
−iE(2iR, 3

4), whereE(φ,m) is the elliptic integral of the second kind with parametersφ and
m. It is interesting to note that the marginal probability distributions overr differ significantly
for smallR values, but asR becomes larger, the two graphs coincide. Mathematically, it is
not hard to understand why. The ratio√

4 cosh2(2r)− sinh2(2r)

sinh(2r)
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and the ratio of the normalization factors
−iE(2Ri, 3/4)

sinh2[R]

approach the same constant value of
√

3 asr goes to infinity. Physically, this seems to indicate
that if the squeezing parameter can vary over a wider range, there is essentially no difference
in the prior probability distribution of the squeeze parameter for displaced or undisplaced
squeezing states.
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